Test Procedures

Our usual SSD test procedure was not designed to handle multi-device tiered storage, so some changes had to be made for this review and as a result much of the data presented here is not directly comparable to our previous reviews. The major changes are:

  • All test configurations were running the latest OS patches and CPU microcode updates for the Spectre and Meltdown vulnerabilities. Regular SSD reviews with post-patch test results will begin later this month.
  • Our synthetic benchmarks are usually run under Linux, but Intel's caching software is Windows-only so the usual fio scripts were adapted to run on Windows. The settings for data transfer sizes and test duration are unchanged, but the difference in storage APIs between operating systems means that the results shown here are lower across the board, especially for the low queue depth random I/O that is the greatest strength of Optane SSDs.
  • We only have equipment to measure the power consumption of one drive at a time. Rather than move that equipment out of the primary SSD testbed and use it to measure either the cache drive or the hard drive, we kept it busy testing drives for future reviews. The SYSmark 2014 SE test results include the usual whole-system energy usage measurements.
  • Optane SSDs and hard drives are not any slower when full than when empty, because they do not have the complicated wear leveling and block erase mechanisms that flash-based SSDs require, nor any equivalent to SLC write caches. The AnandTech Storage Bench (ATSB) trace-based tests in this review omit the usual full-drive test runs. Instead, caching configurations were tested by running each test three times in a row to check for effects of warming up the cache.
  • Our AnandTech Storage Bench "The Destroyer" test takes about 12 hours to run on a good SATA SSD and about 7 hours on the best PCIe SSDs. On a mechanical hard drive, it takes more like 24 hours. Results for The Destroyer will probably not be ready this week. In the meantime, the ATSB Heavy test is sufficiently large to illustrate how SSD caching performs for workloads that do not fit into the cache.

Benchmark Summary

This review analyzes the performance of Optane Memory caching both for boot drives and secondary drives. The Optane Memory modules are also tested as standalone SSDs. The benchmarks in this review fall into three categories:

Application benchmarks: SYSmark 2014 SE

SYSmark directly measures how long applications take to respond to simulated user input. The scores are normalized against a reference system, but otherwise are directly proportional to the accumulated time between user input and the result showing up on screen. SYSmark measures whole-system performance and energy usage with a broad variety of non-gaming applications. The tests are not particularly storage-intensive, and differences in CPU and RAM can have a much greater impact on scores than storage upgrades.

AnandTech Storage Bench: The Destroyer, Heavy, Light

These three tests are recorded traces of real-world I/O that are replayed onto the storage device under test. This allows for the same storage workload to be reproduced consistently and almost completely independent of changes in CPU, RAM or GPU, because none of the computational workload of the original applications is reproduced. The ATSB Light test is similar in scope to SYSmark while the ATSB Heavy and The Destroyer tests represent much more computer usage with a broader range of applications. As a concession to practicality, these traces are replayed with long disk idle times cut short, so that the Destroyer doesn't take a full week to run.

Synthetic Benchmarks: Flexible IO Tester (FIO)

FIO is used to produce and measure artificial storage workloads according to our custom scripts. Poor choice of data sizes, access patterns and test duration can produce results that are either unrealistically flattering to SSDs or are unfairly difficult. Our FIO-based tests are designed specifically for modern consumer SSDs, with an emphasis on queue depths and transfer sizes that are most relevant to client computing workloads. Test durations and preconditioning workloads have been chosen to avoid unrealistically triggering thermal throttling on M.2 SSDs or overflowing SLC write caches.

Introduction SYSmark 2014 SE
POST A COMMENT

97 Comments

View All Comments

  • sharath.naik - Tuesday, May 15, 2018 - link

    I was wondering if the lifespan of these are no better than SSD. wont this burn out much faster than the drives lifespan if used as a cache for it? Reply
  • MajGenRelativity - Tuesday, May 15, 2018 - link

    Optane drives are more durable than the average SSD Reply
  • CheapSushi - Wednesday, May 16, 2018 - link

    Even more so than MLC NAND, which seems to be getting harder and harder to find (aside from Samsung's PRO line). Reply
  • Drumsticks - Tuesday, May 15, 2018 - link

    Is anybody else interested in the performance of the 800p as a cache drive? The difference between an Optane SSD 800p and a 1TB HDD versus a 1TB SATA drive nowadays is less than $15, so it's pretty comparable for effectively the same capacity of storage. On the other hand, in the 25 or so graphs presented in this review, the 118GB caching solution outperforms a SATA drive, sometimes handily, in 24 of them. The 25th is power consumption, and one of them has a single loss in run 1 of the latency measurement for the heavy test.

    Hell, sometimes that solution outperforms the 900p. Why would you pick a comparably priced 1TB SATA SSD over something like that? If you need less storage, a 500GB will perform even worse than a 1TB, and a 250GB would be even worse still. Going down in capacity on the Optane drive would still probably keep you in the range of the SATA drive, while leaving you with double or quadruple the capacity.
    Reply
  • Giroro - Tuesday, May 15, 2018 - link

    "58GB 800P is functionally identical to the 64GB M10 and both have the exact same usable capacity of 58,977,157,120 bytes."

    Hold on, either something is wrong or that is straight-up false advertisement, a new low that is far beyond how storage manufacturers usually inflate their capacity specs. Don't just breeze past the part where Intel may be illegally marketing this thing. As far as I know Optane doesn't use over-provisioning, and it definitely isn't the normal GiB/GB conversion issue or the typical "formatting" excuse that doesn't actually apply to solid state media, so what gives?

    It has to be a mistake, right?
    Reply
  • The_Assimilator - Wednesday, May 16, 2018 - link

    > it definitely isn't the normal GiB/GB conversion issue

    Actually, it is.
    Reply
  • jordanclock - Wednesday, May 16, 2018 - link

    Yeah, 64GB is ~59GiB. Reply
  • IntelUser2000 - Tuesday, May 15, 2018 - link

    Billy,

    Could you tell us why the performance is much lower? I was thinking Meltdown but 800P article says it has the patch enabled. The random performance here is 160MB/s for 800P, but on the other article it gets 600MB/s.
    Reply
  • Billy Tallis - Tuesday, May 15, 2018 - link

    The synthetic benchmarks in this review were all run under Windows so that they could be directly compared to results from the Windows-only caching drivers. My other reviews use Linux for the synthetic benchmarks. At the moment I'm not sure if the big performance disparity is due entirely to Windows limitations, or if there's some system tuning I could do to Windows to bring performance back up. My Linux testbed is set up to minimize OS overhead, but the Windows images used for this reivew were all stock out of the box settings. Reply
  • IntelUser2000 - Tuesday, May 15, 2018 - link

    What is used for the random tests? IOmeter? Reply

Log in

Don't have an account? Sign up now