Conclusion & First Impressions

The new Snapdragon 888 is overall a very impressive package from Qualcomm, advancing the most important areas for which today’s smartphones are being used. 5G connectivity was the big new feature of 2020 SoCs and smartphones, and the new 888 platform represents the evolution and maturing of the new technologies that had been introduced in prior generations.

The big focus point of the Snapdragon 888 were clearly AI and cameras. The new Hexagon 780 IP block looks immensely impressive and to me seems like a major competitive advantage of the new SoC design – other vendors which aren’t as vertically integrated with their accelerator IPs will have to respond to Qualcomm’s new advancements as it seems like a major performance advantage that will be hard to mimic.

Today’s flagship smartphones have diminished ways of differentiating themselves from one another, with the cameras still being the one aspect where vendors still have very different approaches to their designs. Qualcomm’s push for a triple-ISP system in the Snapdragon 888 pushes the upper limits of what vendors will be able to do on their smartphones, allowing for a continued push for the smartphone camera ecosystem. Even for still-picture camera experiences, it seems that Qualcomm is expecting a more notable technology jump in 2021 as we see the introduction of new sensors and imaging techniques, enabled by the new SoC.

The new CPU configuration gives the new SoC a good uplift in performance, although it’s admittedly less of a jump than I had hoped for this generation of Cortex-X1 designs, and I do think Qualcomm won’t be able to retain the performance crown for this generation of Android-SoCs, with the performance gap against Apple’s SoCs also narrowing less than we had hoped for.

On the GPU side, the new 35% performance uplift is extremely impressive. If Qualcomm is really able to maintain similar power figures this generation, it should allow the Snapdragon 888 to retake the performance crown in mobile, and actually retain it for the majority of 2021.

The new Snapdragon 888 to me looks like a continuation of Qualcomm’s excellent execution over the last few years. Striking a balance between performance, power efficiency, and features is something that may be harder than it sounds, and Qualcomm’s engineering teams here seem to be focused on being able to deliver the overall best package.

Much like the Snapdragon 865, and the last couple of generations of Snapdragon SoCs before it, I expect the new Snapdragon 888 to be an excellent foundation for 2021’s flagship devices, and I’m looking forward to experience the new generation.

Related Reading:

Triple ISPs: Concurrent Triple-Camera Usage
Comments Locked


View All Comments

  • Alistair - Wednesday, December 2, 2020 - link

    Focus on Camera and AI, with tiny ~10 percent CPU performance improvements, and the exact same 4 little cores for the 4th year. I admit I'm a little disappointed. Last time I paid attention it was all about power and Hercules A88 cores.

    Hopefully we see good $700 flagships from Samsung this year instead of the way overpriced S20 series, maybe the integrated modem will help.
  • zeeBomb - Wednesday, December 2, 2020 - link

    Awww yissss. Some of the little things as some people said that could be implemented..but hey I'm all in for the luckiest Snapdragon chipset yet.
  • Raqia - Wednesday, December 2, 2020 - link

    Any thoughts on specific use cases for the hypervisor feature they enabled or any comments from them? It would be nice to just run Linux or Windows apps from my phone attached to a monitor and kb.
  • BedfordTim - Thursday, December 3, 2020 - link

    Samsung Dex might help you.
  • abufrejoval - Thursday, December 3, 2020 - link

    To me that is the most exciting feature of the 888 and one where I'm not sure that Google's Android will pick up on.

    Today mobile phones (and increasingly desktops) are under the control of the ecosystem vendor, all trust and cryptography tied to Apple or Google (or Microsoft). Of course device vendors also want a piece (DeX) but really it's the owner who should be in charge.

    Going forward the number of stakeholders can only increase, there will be governments with vested interests and specific compliance concerns, corporate employers etc.

    So the ability to run a flexible number of enclaves that can be guaranteed not to step or spy on each other will eventually become critical, but also allow to break the stranglehold that Apple and Google currently have on the device you own, but don't control.

    We already have enclaves inside SIM cards and baseband controllers, but they are completely physical, secure that way, but not flexible and affordable to multiply.

    So while I would love to have more details, know if this is like SEV/MKTME on x86 or even better, I don't see how Apple, Google or Microsoft (Pluton!) or even the NSA for that matter, can be motivated to hand the supreme power to you and me, while they can now play in a walled garden we oversee, even if we can't sniff inside.

    In my book I should be able to block conversations between enclaves and their cloud controls, while Apple is pushing the envelope in the opposite direction, hiding their device/command & control-center conversations from owners.

    IHMO that needs to be made painfully illegal, before all the others jump on that bandwagon.
  • ZolaIII - Wednesday, December 2, 2020 - link

    This actually looks like a horrible SoC, which QC didn't bother to improve much. Regarding Samsungs 7nm node things are actually other way around. First gen based on HD lib and with EUV whose both better & more efficient than TSMC 7nm without EUV but it cost more. The second gen is actually 7nm with UHD lib while TSMC 5 nm is a fully new node with around 2.2x higher density (to Samsung 7nm UHD) but sadly not significantly more power efficient while it cost get up more than duble. On the other hand Samsung cost went down as density went up for around 50% and thanks to maturity and good yields it's estimated as twice as much gates per a same price.
    I really wanted to see a new gen of Adreno's (for 4 SoC generations now) instead of that this is minor rework (couple new functions) in a same cluster configuration as it's predecessor. Now imagine 2x increase in logic with TSMC 5 nm process at 30% lower speed. I do think quoted 35% increase is in ideal conditions (utilising new stuff which we won't see in the next couple of years) while in reality we will see just a small insignificant increase.
    What's the use of single high performance CPU core which outruns the rest by working 50% IPC? Sure each & every first core on any cluster will be a one to bare the burden of the one where everything is started before workers are deployed but it only needs culpe % more capacity to balance that.
    Seams they didn't done nothing to increase cache coherence and efficiency.
    DSP had seen a real improvement but I don't look at QC Hexogen as something good (stiff, property, hard to get to & not flexible) to the point of thinking such things shouldn't exist. The biggest gain will be a integration of 5G modem which will cut power consumption in half.

    All in all a rather bad job.
  • iphonebestgamephone - Wednesday, December 2, 2020 - link

    Its good as long as i get the the 25% and 35% imptovements.
  • ZolaIII - Wednesday, December 2, 2020 - link

    Thing is you will only get around 20~25% improvement in a single (X1) core while in full all CPU core utilisation that will sink to only couple % (thanks to; bus, typology and memory coherence bottlenecks. Early Geekbench results already confirmed this. It will be same regarding GPU, it will get it's 30% advantage but only when new futures are used (which they won't be in a long time).
  • iphonebestgamephone - Wednesday, December 2, 2020 - link

    Oh man, i forgot what they did with the 855, 45% cpu improvement over 845. But that was only on geekbench 4 single core. With maybe 15% on multi.
  • Raqia - Wednesday, December 2, 2020 - link

    In addition to integrating the Modem, they also appear to be integrating WIFI (FastConnect 6900) and Bluetooth on die now. Prior year diagrams seem to have illustrated WIFI and Bluetooth off chip.

    "I really wanted to see a new gen of Adreno's (for 4 SoC generations now) instead of that this is minor rework (couple new functions) in a same cluster configuration as it's predecessor."

    Are you really sure about it being a minor rework? Variable rate shading may be possible or not give as much of a performance boost without some changes to the hardware. The rest is just marketing much like the moniker 888 is.

Log in

Don't have an account? Sign up now