Advanced Synthetic Tests

Our benchmark suite includes a variety of tests that are less about replicating any real-world IO patterns, and more about exposing the inner workings of a drive with narrowly-focused tests. Many of these tests will show exaggerated differences between drives, and for the most part that should not be taken as a sign that one drive will be drastically faster for real-world usage. These tests are about satisfying curiosity, and are not good measures of overall drive performance. For more details, please see the overview of our 2021 Consumer SSD Benchmark Suite.

Whole-Drive Fill

Pass 1
Pass 2

The SLC write cache on the 2TB Inland Performance Plus lasts for about 225GB on first pass (about the same cache size as 980 PRO, but a bit faster), and about 55GB on the second pass when the drive is already full. Performance during each phase of filling the drive is quite consistent, with the only significant variability showing up after the drive is 80% full. Sequential write performance during the SLC cache phase is higher than any other drive we've tested to date.

Sustained 128kB Sequential Write (Power Efficiency)
Average Throughput for last 16 GB Overall Average Throughput

The post-cache performance is a bit slower than the fastest TLC drives, but overall average throughput is comparable to other top TLC drives. The Inland Performance Plus is still significantly slower than the MLC and Optane drives that didn't need a caching layer, but one or two more generational improvements in NAND performance may be enough to overcome that difference.

Working Set Size

As expected from a high-end drive with a full-sized DRAM buffer, the random read latency from the Inland Performance Plus is nearly constant regardless of the working set size. There's a slight drop in performance when random reads are covering the entire range of the drive, but it's smaller than the drop we see from drives that skimp on DRAM.

Performance vs Block Size

Random Read
Random Write
Sequential Read
Sequential Write

There are no big surprises from testing the Inland Performance Plus with varying block sizes. The Phison E18 controller has no problem handling block sizes smaller than 4kB. The random write results are a little rough especially when testing the drive at 80% full, but it's hardly the only drive to have SLC cache troubles here. Like many other drives, the sequential read performance doesn't scale smoothly with the larger block sizes, and the drive really needs a larger queue depth or very large block size to deliver great sequential read performance. 

Synthetic Tests: Basic IO Patterns Mixed IO Performance and Idle Power Management
Comments Locked


View All Comments

  • FatFlatulentGit - Thursday, May 13, 2021 - link

    Is there a reason the Sabrent Rocket 4 Plus never shows up in the benches? I'm baffled that AT didn't review that one as it uses the Phison E18 and came out about six months ago. You don't even include it in your bench results and it's a flagship PCIe4 M.2 drive. What gives?
  • Linustechtips12#6900xt - Thursday, May 13, 2021 - link

    could just be they didn't think of it,
  • Death666Angel - Thursday, May 13, 2021 - link

    They probably didn't get sampled one. Sabrent seems more like a non-brand type option and thus likely does not have much of a PR presence.
  • Billy Tallis - Thursday, May 13, 2021 - link

    The timing of the first round of review samples of the Rocket 4 Plus didn't work out for us, because I was still putting the finishing touches on the new test suite and had a bit of a backlog of other Gen4 drives to review first. By the time I was ready to start testing an E18 drive, Inland was offering to sample several of their drives, and they're also a frequently requested brand. It wouldn't make sense to review the Rocket 4 Plus now because it's the same underlying hardware as the Inland Performance Plus. We'll wait for the 176L NAND before doing another E18 review.
  • Chaser - Thursday, May 13, 2021 - link

    Until Microsoft unshackles Windows from the magnetic Hard disk era, the perceptible difference between most SSDs in Windows desktop is miniscule. But I suppose these reviews and their hairsplitting synthetic benchmarks get clicks.
  • Marlin1975 - Thursday, May 13, 2021 - link

    What are you talking about? Performance between platter disk and SSD/M.2 is day and night.
  • evilpaul666 - Thursday, May 13, 2021 - link

    There is a huge difference between rust and flash, but we could use some major software improvements and architectural improvements to PCs to move them forward. Maybe persistent memory? A better file system that uses something like compression and checksums on everything similar to ZFS?
  • GeoffreyA - Thursday, May 13, 2021 - link

    NTFS has had compression since NT 3.51 or 4, and ReFS, checksums.
  • DougMcC - Sunday, May 16, 2021 - link

    It's great and all but linux/mac do most disk intensive activities close to twice as fast. Mac and Linux have completely taken over at my company because of this.
  • GeoffreyA - Sunday, May 16, 2021 - link

    Haven't got much experience with Linux but yes, I believe its performance beats Windows on a lot of points.

Log in

Don't have an account? Sign up now